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Electro-Optical Characterization Team
R. K. Ahrenkiel: Team Leader and Research Fellow
Electro-Optical Characterization Team
R. K. Ahrenkiel: Team Leader and Research Fellow

•Recombinaton Lifetime Characterization

•Photoluminescence Spectroscopy

•Deep Level Transient Spectroscopy (DLTS)

•Fourier Transform Infrared Spectroscopy

•Scanning Ellipsometry

•Technique Development
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Electro-Optical Characterization Team
R. K. Ahrenkiel: Team Leader and Research Fellow
Electro-Optical Characterization Team
R. K. Ahrenkiel: Team Leader and Research Fellow

• R. K. Ahrenkiel: Photoconductive Lifetime (RCPCD)
• Pat Dippo: Energy Resolved Photoluminescence
• Brian Keyes: Fourier Transform Spectroscopy
• Dean Levi: Ellipsometry
• Bhushan Sopori: Technique Development
• Wyatt Metzger: Photoluminescence Lifetime and Device Modeling
• Steve Johnston: Deep Level Transient Spectroscopy
• Lynn Gedvilas: Fourier Transform Spectroscopy
• Four Graduate Students: J. Dashdorj and J. Luther (CSM), Sung Ho Han 

(CU-Boulder), Chuan Li (New Jersey Institute of Technology)
• Sabbatical: (9/04) Prof. Tim Gfroerer
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Photovoltaic PrinciplesPhotovoltaic Principles
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Resonance-coupled Photoconductive DecayResonance-coupled Photoconductive Decay
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RCPCD CompositeRCPCD Composite
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RCPCD
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Time-resolved 
Photoluminescence and 
Lifetime Measurements

Time-resolved 
Photoluminescence and 
Lifetime Measurements
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Time-resolved PhotoluminescenceTime-resolved Photoluminescence

• Inject excess carriers into a sample with laser 
causing photoluminescence

• Watch the photoluminescence intensity decay

• Use a semiconductor diode, single photon 
counting, up-conversion TRPL
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The SampleThe Sample

• Double heterostructure confines carriers and 
provides surface passivation

• Cap layers are generally very thin and transparent 
to PL and incident laser light

• Not limited to this structure, but preferable

Band diagram

InP

InGaAs

InP

Light
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Single Photon Counting SchematicSingle Photon Counting Schematic
1. We count a 

photon once 
in about 300 
attempts.

2. We make 
1 million 
attempts 
per second.

3. We finish with 
a histogram of 
photon counts 
vs. time. 
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ResultsResults
National Renewable Energy Laboratory
Electro-Optical Characterization Group
Wyatt Metzger (303) 384-6572
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Lifetime often Correlated with VocLifetime often Correlated with Voc
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The Experimental Range The Experimental Range 
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Good for wavelengths
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Lifetime Ranges for Different MaterialsLifetime Ranges for Different Materials
Material Lifetime Range Mechanism Injection Control

GaAs

GaInAs

GaInP

CdTe 200 ps - 2ns nonradiative no some

CIGS

GaNP

GaInAsN

GaAsN

GaInN

Radiative, SRH yes yesShort - 22 µs

100 fs - 10 µs

200 ps - 25 ns

300 ps - 3 ns

100 ps - 10 ns

100 ps - 10 ns

100 ps - 10 ns

Auger, Radiative, 
SRH

yes yes

Mostly SRH no some

100 ps - 10 ns

nonradiative no not monitored

nonradiative no Depends on N

nonradiative no Depends on N

nonradiative no Depends on N

nonradiative no Depends on N
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Liquid
nitrogen
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optical DLTS
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Deep Level Transient SpectroscopyDeep Level Transient Spectroscopy
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The Effects of Traps (Impurities)The Effects of Traps (Impurities)
n-Type

p-Type

Trap (impurity) Trap (impurity)

Depleted region

Example: gold in silicon
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Concentration of Traps Corresponding with the 
Low-T Peak Increases with Increasing Amounts of N

Concentration of Traps Corresponding with the 
Low-T Peak Increases with Increasing Amounts of N
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Drive Level Capacitance ProfilingDrive Level Capacitance Profiling
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converterconverter

03532064



Sample Data Using Drive Level 
Capacitance Profiling

Sample Data Using Drive Level 
Capacitance Profiling

Capacitance is plotted versus AC amplitude (plus an adjustment of DC) for 
several DC biases. Each curve is fit to a 2nd order polynomial to calculate 
the impurity density at a given depletion depth. This process is repeated 
for multiple AC frequencies. 
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Temperature Dependent Current-VoltageTemperature Dependent Current-Voltage
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Sample Temperature Dependent IV DataSample Temperature Dependent IV Data
Current-Voltage 
measurements are 
taken as a sample is 
cooled down to liquid 
nitrogen temperature. 
The current density 
is then plotted in an 
Arrhenius plot for 
several reverse 
biases. The slope 
of this data can 
provide activation 
energies or insight 
into band diagram 
information.
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Energy Resolved PhotoluminescenceEnergy Resolved Photoluminescence
• Energy resolved photoluminescence is a process that helps researchers determine 
the bandgap for a semiconductor material and also enables researchers to look for 
defects within those kinds of materials. The fewer defects a material has the more 
efficiently it will perform. Photoluminescence is the product of electron hole pairs 
recombining and producing photons. Those photons are emitted from within the 
bandgap and below the bandgap if there are defects.

• The experiment set up is very simple and straightforward. Collimated light (laser) is 
focused onto a semiconductor sample to excite the electrons above the bandgap. 
Many laser lines can be used. At NREL there are six CW laser lines available and 
they range between 325nm to 822nm. The photoluminescence is then collected 
through a lens collimated and focused onto a slit on an imaging spectrograph. This 
light is then passed through the spectrograph to either a CCD array or a photodiode 
array. The spectra is then acquired and recorded through data acquisition software 
onto a computer. It can then be analyzed and archived.
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ERPL Measurement Using Continuous 
Flow (portable) Cryostat

ERPL Measurement Using Continuous 
Flow (portable) Cryostat
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ERPL CapabilitiesERPL Capabilities
• CCD (charge coupled device) Camera for PL measurements in the visible

• InGaAs PDA (photodiode array) for measurements in the NIR

• Imaging spectrometer with four gratings for use with the CCD and PDA

• InSb detector with a scanning  monochrometer for measurements in the IR

• Ge detector with a triple grating monochrometer for high resolution 
measurements at longer wavelengths.

• Closed cycle cryostat which enables measurements to be performed at 
4.25 K

• Temperature controller to allow temperature dependent measurements.

• Continuous flow cryostats that are portable and can be used with different 
setups in the laboratory (technique development)
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ERPL Setup Using the CCD CameraERPL Setup Using the CCD Camera
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PL Spectra of CIS/CGS Material at 
Room Temperature

PL Spectra of CIS/CGS Material at 
Room Temperature
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• Reflectance, transmittance, and absorption measurements
• Spectral region is home to molecular and free carrier absorption
• Impurity analysis
• Bonding configurations
• Quantitative analysis
• Nondestructive
• Sensitivity advantages over dispersive systems
• Imaging capabilities
• Low-gap photoluminescence measurements and mapping

Fourier Transform Infrared (FTIR) 
Spectroscopy

Brian M. Keyes and Lynn M. Gedvilas

Fourier Transform Infrared (FTIR) 
Spectroscopy

Brian M. Keyes and Lynn M. Gedvilas
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Impurity Concentrations in Crystalline SiliconImpurity Concentrations in Crystalline Silicon
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Amorphous-Microcrystalline Silicon 
Transition

Amorphous-Microcrystalline Silicon 
Transition

• Si-H infrared bonding configurations are related to microcrystallinity
• Higher crystalline volume fractions favor increased oxidation — measure of device quality
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a-SiGe:H Alloysa-SiGe:H Alloys

• Low-gap alloy in tandem devices
• Increased Ge-H bonding produces higher-quality alloys

a-SiGe:H High Ts = 345°C  
10%GeH4
a-SiGe:H Low Ts = 250°C   
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Transparent 
Conducting 

Oxide Films —
Uniformity Map

Transparent 
Conducting 

Oxide Films —
Uniformity Map
•Support of combinatorial 
growth efforts

•Reflectance and 
transmittance maps

•Nondestructive measure 
of transport properties 
through determination 
of plasma frequency
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Variable Angle Spectroscopic EllipsometerVariable Angle Spectroscopic Ellipsometer
• Rotating compensator ellipsometer
• Automated variable angle measurement
• Sample translation and mapping
• Small-spot focusing ability (~1 mm spot size)
• Dual array detectors, 0.7–5.0 eV range, spectra in a few seconds

Collection optics
fiber-coupled 

to remote
spectrometers

Dual light source
UV – NIR 

Optical fibers 

Stepping-motor driven rotation stages —
for sample and collection optics arm 

Sample x, y 
translation stages 

Sample (Si wafer) 
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Optical Properties of Ordered Ga0.51In0.49POptical Properties of Ordered Ga0.51In0.49P
• Ga0.51In0.49P is a critical component of multi-junction, high efficiency solar cells
• Spontaneous ordering of Ga and In along (111) occurs during MOCVD growth
• Ordering reduces the bandgap and causes optical anisotropy
• These effects depend on the degree of ordering 

– which can be controlled during growth
• Accurate modeling of GaInP-based PV requires accurate optical constants

• Ellipsometry spectra are measured for various sample orientations to determine 
anisotropic optical constants

Crystal cleaves along (110), (110), (110), and (110) planes

(111) Ordering planes

θ
hν

50.8o

(111)
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Ga0.51In0.49P Optical Properties vs. OrderingGa0.51In0.49P Optical Properties vs. Ordering

•Degree of ordering expressed in terms of ordering parameter h, 0 < h < 1
•In figures above, red corresponds to h = 0.45, green h = 0.31, and blue 
h = 0.10

•Extraordinary optical constants, on left side, show splitting of valence 
band max due to reduced symmetry produced by ordering

•Ordinary optical constants on right side shows reduced band gap with 
ordering
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In-situ Real Time Spectroscopic Ellipsometry Studies of 
a-Si:H Growth

In-situ Real Time Spectroscopic Ellipsometry Studies of 
a-Si:H Growth

•NREL silicon materials team currently working to optimize HIT 
(heterojunction with intrinsic layer) solar cells

•Devices require very thin amorphous silicon layers on silicon substrate
•Efficiencies as high as 21% have been achieved — because of very 
effective surface passivation by a-Si:H layer on silicon wafer

•Accurate thickness control requires real-time feedback — growth rates 
change with filament aging and changes in deposition gas flow rates, etc.

•Passivation requires immediate a-Si:H deposition at interface — epitaxial
deposition on wafer surface hinders passivation effect of a-Si:H — c-Si
interface

n-Type silicon wafern-Type silicon wafer

50 A undoped a-Si:H
100–300 Å p-type a-Si:H
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In-Situ RTSE Provides Real-time Feedback and
Post-deposition Analysis of Crystallinity

In-Situ RTSE Provides Real-time Feedback and
Post-deposition Analysis of Crystallinity
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